Home » Literatura o NF EMP

Literatura o NF EMP

od blazv

Epidemiološke raziskave

  • AMOON AT, CRESPI CM, AHLBOM A, BHATNAGAR M, BRAY I, BUNCH KJ, CLAVEL J, FEYCHTING M, HÉMON D, JOHANSEN C, KREIS C, MALAGOLI C, MARQUANT F, PEDERSEN C, RAASCHOU-NIELSEN O, RÖÖSLI M, SPYCHER BD, SUDAN M, SWANSON J, TITTARELLI A, TUCK DM, TYNES T, VERGARA X, VINCETI M, WÜNSCH-FILHO V, KHEIFETS L. 2018a. Proximity to overhead power lines and childhood leukaemia: an international pooled analysis. Br. J. Cancer 119:364-373.
  • AMOON, A. T., OKSUZYAN, S., CRESPI, C. M., ARAH, O. A., COCKBURN, M., VERGARA, X. & KHEIFETS, L. 2018-b. Residential mobility and childhood leukemia. Environ Res, 164, 459- 466
  • AUGER, N., ARBOUR, L., LUO, W., LEE, G. E., BILODEAU-BERTRAND, M. & KOSATSKY, T. 2019. Maternal proximity to extremely low frequency electromagnetic fields and risk of birth defects. Eur J Epidemiol, 34, 689-697.
    CRESPI CM, SWANSON J, VERGARA XP, KHEIFETS L. 2019. Childhood leukemia risk in the California Power Line Study: Magnetic fields versus distance from power lines. Environ. Res. 171:530-535.
  • ESMAILZADEH, S., AGAJANI DELAVAR, M., GHOLAMIAN, S. A., AHMADI, A., HOSSEINPOUR HAYDARI, F. & POURALI, M. 2019. Electromagnetic Fields Exposure from Power Lines and Human Fertility. Iran J Public Health, 48, 986-987.
  • GERVASI, F., MURTAS, R., DECARLI, A. & RUSSO, A. G. 2019. Residential distance from highvoltage overhead power lines and risk of Alzheimer’s dementia and Parkinson’s disease: a population-based case-control study in a metropolitan area of Northern Italy. Int J Epidemiol, 48, 1949-1957.
  • GUNNARSSON, L. G. & BODIN, L. 2018. Amyotrophic Lateral Sclerosis and Occupational Exposures: A Systematic Literature Review and Meta-Analyses. Int J Environ Res Public Health, 15.
  • KHEIFETS, L., CRESPI, C. M., HOOPER, C., COCKBURN, M., AMOON, A. T. & VERGARA, X. P. 2017. Residential magnetic fields exposure and childhood leukemia: a population-based case-control study in California. Cancer Causes Control, 28, 1117-1123.
  • PETERS, S., VISSER, A. E., D’OVIDIO, F., BEGHI, E., CHIÒ, A., LOGROSCINO, G., HARDIMAN, O., KROMHOUT, H., HUSS, A., VELDINK, J., VERMEULEN, R. & VAN DEN BERG, L. H. 2019. Associations of Electric Shock and Extremely Low-Frequency Magnetic Field Exposure With the Risk of Amyotrophic Lateral Sclerosis. Am J Epidemiol, 188, 796-805
  • REN, Y., CHEN, J., MIAO, M., LI, D. K., LIANG, H., WANG, Z., YANG, F., SUN, X. & YUAN, W. 2019. Prenatal exposure to extremely low frequency magnetic field and its impact on fetal growth. Environ Health, 18, 6.
    SCENIHR. 2015. Potential Health Effects of Exposure to Electromagnetic Fields (EMF). Dostopno na: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf
  • ORAHAN, T. M. 2019. Cancer incidence in UK electricity generation and transmission workers, 1973-2015. Occup Med (Lond), 69, 342-351.
  • SU, L., YIMAER, A., XU, Z. & CHEN, G. 2018. Effects of 1800 MHz RF-EMF exposure on DNA damage and cellular functions in primary cultured neurogenic cells. Int J Radiat Biol, 94, 295- 305.
  • SWANSON J, BUNCH KJ. 2018. Reanalysis of Risks of Childhood Leukaemia With Distance From Overhead Power Lines in the UK. J. Radiol. Prot. 38:N30-N35.
  • SWANSON J, KHEIFETS LI, VERGARA X. 2019. Changes over time in the reported risk for childhood leukaemia and magnetic fields. J. Radiol. Prot. 39:DOI 10.1088/1361-6498/ab0586
  • TALIBOV, M., OLSSON, A., BAILEY, H., ERDMANN, F., METAYER, C., MAGNANI, C., PETRIDOU, E., AUVINEN, A., SPECTOR, L., CLAVEL, J., ROMAN, E., DOCKERTY, J., NIKKILÄ, A., LOHI, O., KANG, A., PSALTOPOULOU, T., MILIGI, L., VILA, J., CARDIS, E. & SCHÜZ, J. 2019. Parental occupational exposure to low-frequency magnetic fields and risk of leukaemia in the offspring: findings from the Childhood Leukaemia International Consortium (CLIC). Occup Environ Med, 76, 746-753.
  • ZHANG Y, LAI J, RUAN G, CHEN C, WANG DW. 2016. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: a pooled analysis of epidemiologic studies.Environ. Int. 88:36-43.

Biološki vplivi

  • Alekperov SI, Suetov AA, Efremov VI, Kimstach AN, Lavrenenok LV. The effect of electromagnetic fields of extremely low frequency 30 Hz on rat ovaries. Bull Exp Biol Med 166: 704-707, 2019
  • Calabro E, Magazu S. Infrared spectroscopic demostration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields. Int J Rad Biol 95: 781-187, 2019
  • Campos-Sanches E, Vicente-Duenas C, Rodrigues-Hernandes G, Capstic M, Kuster N, Dasenbrock C, Sanches-Garcia I, Cobaleda C. Novel ETV-RUNX1 mouse model to study the role of ELF-MF in childhood B-acute lymphoblastic leukemia: a pilot study. Bioelectromagnetics 40: 343-353, 2019
  • Chen L, Xia Y, Lu J, Xie Q, Ye A, Sun W. A 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway. Ecotoxicol Environ Saf 194:110407, 2020
  • DI, G., KIM, H., XU, Y., KIM, J. & GU, X. 2019. A comparative study on influences of static electric field and power frequency electric field on cognition in mice. Environ Toxicol Pharmacol, 66, 91-95.
  • García-Minguillán O, Prous R, Ramirez-Castillejo MDC, Maestú C. CT2A Cell Viability Modulated by Electromagnetic Fields at Extremely Low Frequency under No Thermal Effects. Int J Mol Sci. 21(1): 152, 2019.
  • Gorski R, Kotwicka M, Skibinska I, Jendraszak M, Wosinski S. Effect of low-frequency electric field screening on motility of human sperm. 27(3): 427-434, 2020
  • Gunes S, Buyukakilli B, Yaman S, Turkseven CH, Ballı E, Cimen B, Bayrak G, Celikcan HD. Effects of extremely low-frequency electromagnetic field exposure on the skeletal muscle functions in rats. Toxicology and Industrial Health 36(2): 119–131, 2020.
  • Harakawa S, NedachiT, Suzuki H. Extremely low frequency electric field suppresses not only induced stress response but also stress related tissue damage in mice. Scientific Reports 10: 20930, 2020
  • Kakikawa M, Maeda T, Yamada S, Combined effects of 60 Hz magnetic fields and anticancer drugs on human hepatoma HepG2 cells. IEEE Jopurnal of electromagnetics, RF and Microwaves in medicine and biology 3: 56-60, 2019
  • Karimia SA, Salehia I, Shykhic T, Zarec S, Komakia A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural Brain Research 359: 630–638, 2019
  • Ki GE, Kim YM, Lim HM, Lee EC, Choi YK, Seo YK. Extremely Low-Frequency Electromagnetic Fields Increase the Expression of Anagen-Related Molecules in Human Dermal Papilla Cells via GSK-3β/ERK/Akt Signaling Pathway. Int J Mol Sci 21(3): 784, 2020
  • Lekovic MH, Drekovic NE, Granica ND, Mahmutovic EH, Djordjevic NZ. Extremely low-frequency electromagnetic field induces a change in proliferative capacity and redox homeostasis of human lung fibroblast cell line MRC-5. Environ Sci Pollut Res Int 27(31), 39466-39473, 2020
  • Lundberg L, Sienkiewicz Z, Anthony DC, Broom KA. Effects of 50 Hzmagnetic fields on cirkadian rhythm control in mice. Bioelectromagnetics 40: 250-259, 2019
  • Mahaki H, Tanzadehpanah H, Jabarivasal N, Sardanian K, Zamani A. A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine 38(1): 84-95, 2019
  • MAHAKI, H., JABARIVASAL, N., SARDANIAN, K. & ZAMANI, A. 2020. Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels. Int J Occup Environ Med, 11, 24-32.
  • Martínez MA, Úbeda A, Trillo MA. Involvement of the EGF Receptor in MAPK Signaling Activation by a 50 Hz Magnetic Field in Human Neuroblastoma Cells. Cell Physiol Biochem 52:893-907, 2019
  • MOLAEI, S., ALAHGHOLI-HAJIBEHZAD, M., GHOLAMIAN-HAMADAN, M., ZAERIEGHANE, Z. & ZAMANI, A. 2019. Effect of 50-Hz Magnetic Fields on Serum IL-1β and IL-23 and Expression of BLIMP-1, XBP-1, and IRF-4. Inflammation, 42, 1800-1807.
  • Qui L, Chen L, Yang X, Ye A, Jiang W, Sun W. S1P mediates human amnioticcells proliferation induced by a 50-Hz magnetic field exposure via ERK1/2 signaling pathway. J cell Physiol 234: 7734-7741, 2019
  • Ruan G, Liu X, Zhang Y, Wan B, Zhang J, Ali J, He M, Chen C. Power-frequency magnetic fields at 50 Hz do not affect fertility and development in rats and mice. Electromagnetic Biology and Medicine 38: 111-122, 2019
  • Vallejo D, Hidalgo MA, Hernandez JM. Effects of long-term exposure to an extremely low frequency magnetic field (15uT) on selected blood coagulation variablesin OF1 mice. Electromag Biol Med 38: 279-286, 2019
  • Wang MH, Jian MW, Tai YH, Jang LS, Chen CH. Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels. Electromagnetic Biology and Medicine 2021, 40(1), 150–157, 2021
  • Yang X, Ye A, Chen L, Xia Y, Jiang W, Sun W. Involvement of calcium in 50-Hz magnetic field-induced activation of sphingosine kinase1 signaling pathway. Bioelectromagnetics 40: 180-187, 2019
  • Yao F, Li Z, Cheng L, Zhang L, Zha X, Jing J. Low frequency pulsed electromagnetic field promotes differentiation of oligodendrocyte precursor cells throughupregulation of miR-219-5p. Life Sci 223: 185-193, 2019
  • Yong Wang Y, Xingfa Liu X, Yemao Zhang Y, Baoquan Wan B, Jiangong Zhang J, Wei He W, Dong Hu D, Yong Yang Y, Jinsheng Ali J, Mengying He M, Chen C. Exposure to a 50 Hz magnetic field at 100 μT exerts no DNA damage in cardiomyocytes. Biology Open 8: bio041293, 2019

Mehanizmi interakcij

  • Babcock NS, Kattnig DR. electron-electron dipolar interaction poses a challenge to the radical pair mechanism of magnetoreception. J Phys Chem Lett 11:2414-2421, 2020. DOI: 10.1021/acs.jpclett.0c00370
  • Binhi VN. Nonspecific magnetic biological effects: A model assuming the spin-orbit coupling. J Chem Phys 151:241011, 2019. DOI: 10.1063/1.5127972
  • Buchanchenko AL, Bukhvostov AA, Ermakov KV, Kuznetsov DA. A specific role of magnetic isotopes in biological and ecological systems. Physics and biophysics beyond. Prog Biophys Mol Biol 155:1-19, 2020.
  • DOI: 10.1016/j.pbiomolbio.2020.02.007
  • Hore PJ. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife 8: e44179, 2019. DOI: 10.7554/eLife.44179.001
  • Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins – Novel perspectives on food and potential health implications. Food Res Int 137:109709, 2020. DOI: 10.1016/ j.foodres.2020.109709
  • Simkó M, Mattsson MO. Activation of the intracellular temperature and ROS sensor membrane protein STIM1 as a mechanism underpinning biological effects of low-level low frequency magnetic fields. Med. Hypotheses 122:68-72, 2019. DOI: 10.1016/j.mehy.2018.10.013
  • SZO (Svetovna zdravstvena organizacija / World Health Organization). Environmental Health Criteria 238: Extremely low frequency fields. WHO, 2007. ISBN: 978 92 4 157238 5

Dozimetrija in izpostavljenost

  • Abuasbi F, Lahham A, Abdel-Raziq IR: Levels of extremely low-frequency electric and magnetic fields from overhead power lines in the outdoor environment of Ramallah city-Palestine. Radiat Prot Dosimetry 179 (3): 229-232, 2018
  • Abuasbi F, Lahham A, Abdel-Raziq IR: Residential Exposure to Extremely Low Frequency Electric and Magnetic Fields in the City of Ramallah-Palestine. Radiat Prot Dosimetry 179 (1): 49-57, 2018
  • Aga K, Hirata A, Laakso I, Tarao H, Diao Y, Ito T, Sekiba Y, Yamazaki K: Intercomparison of In Situ Electric Fields in Human Models Exposed to Spatially Uniform Magnetic Fields. IEEE Access 6: 70964-70973, 2018
  • Amoon AT, Arah OA, Kheifets L: The sensitivity of reported effects of EMF on childhood leukemia to uncontrolled confounding by residential mobility: a hybrid simulation study and an empirical analysis using CAPS data. Cancer Causes Control 30 (8): 901-908, 2019
  • Amoon AT, Crespi CM, Nguyen A, Zhao X, Vergara X, Arah OA, Kheifets LI: The role of dwelling type when estimating the effect of magnetic fields on childhood leukemia in the California Power Line Study (CAPS). Cancer Causes Control 31 (6): 559-567, 2020
  • Amoon AT, Swanson J, Vergara X, Kheifets LI: Relationship between distance to overhead power lines and calculated fields in two studies. J Radiol Prot 40 (2): 431-443, 2020
  • Baaken D, Wollschläger D, Samaras T, Schüz J, Deltour I: Exposure To Extremely Low-Frequency Magnetic Fields In Low- And Middle-Income Countries: An Overview. Radiat Prot Dosimetry 191 (4): 487–500, 2020
  • Bottauscio O, Arduino A, Bavastro D, Capra D, Guarneri A, Parizia AA, Zilberti L: Exposure of Live-Line Workers to Magnetic Fields: A Dosimetric Analysis. Int J Environ Res Public Health 17 (7): E2429, 2020
  • Chiaramello E, Le Brusquet L, Parazzini M, Fiocchi S, Bonato M, Ravazzani P: 3D space-dependent models for stochastic dosimetry applied to exposure to low frequency magnetic fields. Bioelectromagnetics 40 (3): 170-179, 2019
  • Diamantis A, Kladas AG: Mixed Numerical Methodology for Evaluation of Low-Frequency Electric and Magnetic Fields Near Power Facilities. IEEE Trans Magn 55 (6): 7000704, 2019
  • Gourzoulidis GA, Tsaprouni P, Skamnakis Ν, Tzoumanika C, Kalampaliki E, Karastergios E, Gialofas A, Achtipis A, Kappas C, Karabetsos E: Occupational exposure to electromagnetic fields. The situation in Greece. Phys Med 49: 83-89, 2018
  • Harimurugan D, Punekar GS, Bhatt NS: E-field computation in 765 kV substation using CSM with reference to occupational exposure. IET Gener Transm Distrib 12 (7): 1680-1685, 2018
  • Hiroo Tarao, Noriyuki Hayashi, Katsuo Isaka: Estimation of short-circuit current induced by ELF uniform electric fields in grounded humans with different body shapes based on a semi-ellipsoidal model, Biomed Phys Eng Express, 2020 Jul 28; 6(5)
  • Hore PJ: Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife 8: e44179, 2019
  • Huo F, Lu W, Qiu Z, Huang D, Huang C. Study on electric field distribution characteristics of the maintenance area when UHV AC transmission line crossing 220 kV tower. JoE 2019 (16): 2986 – 2990, 2019
  • Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ: Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 285 (1879), 2018
  • Khan MW, Juutilainen J, Roivainen P: Registry of Buildings With Transformer Stations as a Basis for Epidemiological Studies on Health Effects of Extremely Low-Frequency Magnetic Fields. Bioelectromagnetics 41 (1): 34-40, 2020
  • Korpinen L, Pääkkönen R: Workers’ exposure to electric fields during the task ‘maintenance of an operating device of circuit breaker from a service platform’ at 110-kV substations. Int J Occup Saf Ergon 2019; 25 (1): 161-164, 2019
  • Krishnan V, Park SA, Shin SS, Alon L, Tressler CM, Stokes W, Banerjee J, Sorrell ME, Tian Y, Fridman GY, Celnik P, Pevsner J, Guggino WB, Gilad AA, Pelled G: Wireless control of cellular function by activation of a novel protein responsive to electromagnetic fields. Sci Rep 8 (1): 8764, 2018
  • Kroll MW, Ritter MB, Perkins PE, Shams L, Andrews CJ: Perceived Electrical Injury: Misleading Symptomology Due to Multisensory Stimuli. J Emerg Med 56 (5): e71-e79, 2019
  • Leske S, Dalal SS: Reducing power line noise in EEG and MEG data via spectrum interpolation. NeuroImage 189: 763-776, 2019
  • Liboff AR: ION cyclotron resonance: Geomagnetic strategy for living systems? Electromagn Biol Med 38 (2): 143-148, 2019
  • Park J, Jeong E, Seomun G: Extremely Low-Frequency Magnetic Fields Exposure Measurement during Lessons in Elementary Schools. Int J Environ Res Public Health 17 (15): E5284, 2020
  • Rashed EA, Gomez-Tames J, Hirata A: Human Head Skin Thickness Modeling for Electromagnetic Dosimetry. IEEE Access 7: 46176 – 46186, 2019
  • Redmayne M: A proposed explanation for thunderstorm asthma and leukemia risk near high-voltage power lines: a supported hypothesis. Electromagn Biol Med 37 (2): 57-65, 2018
  • Schmid G, Hirtl R, Samaras T: Dosimetric issues with simplified homogeneous body models in low frequency magnetic field exposure assessment. J Radiol Prot 39 (3): 794-808, 2019
  • Simkó M, Mattsson MO: Activation of the intracellular temperature and ROS sensor membrane protein STIM1 as a mechanism underpinning biological effects of low-level low frequency magnetic fields. Med Hypotheses 122: 68-72, 2019
  • Soldati M, Laakso I: Effect of electrical conductivity uncertainty in the assessment of the electric fields induced in the brain by exposure to uniform magnetic fields at 50 Hz, IEEE Access 8: 222297-222309, 2020
  • Tang C, Yang C, Cai RS, Ye H, Duan L, Zhang Z, Shi Z, Lin K, Song J, Huang X, Zhang H, Yang J, Cai P: Analysis of the relationship between electromagnetic radiation characteristics and urban functions in highly populated urban areas. Sci Total Environ 654: 535-540, 2019
  • Tognola G, Bonato M, Chiaramello E, Fiocchi S, Magne I, Souques M, Parazzini M, Ravazzani P: Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children. Int J Environ Res Public Health 16 (7): e1230, 2019
  • Tognola G, Chiaramello E, Bonato M, Magne I, Souques M, Fiocchi S, Parazzini M, Ravazzani P: Cluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of Environmental Variables. Int J Environ Res Public Health 16 (22): E4363, 2019
  • Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z: A Power-Frequency Electric Field Sensor for Portable Measurement. Sensors (Basel) 18 (4): 1053, 2018

Načelo previdnosti

  • Persson E, What are the core ideas behind the Precautionary Principle? Umeå University, Department of Historical, Philosophical and Religious Studies, 901 87 Umeå, Sweden. Science of the Total Environment 557–558 (2016) 134–14). Povezava: https://philpapers.org/archive/PERWAT-2.pdf
  • Spruijt P, Knol AB, Petersen AC, Lebret E, Expert Views on Their Role as Policy Advisor: Pilot Study for the Cases of Electromagnetic Fields, Particulate Matter, and Antimicrobial Resistance. (Risk Anal 2019; 39 (5): 968-974). Povezava: https://www.emf-portal.org/en/article/36501
  • Jamieson D, Wartenberg D,The Precautionary Principle and Electric and Magnetic Fields. Am J Public Health. 2001 September; 91(9): 1355–1358. Povezava: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446777/
  • Akins, A.; Lyver, P. O´B.; Alrøe, H.F.; Moller, H.: The Universal Precautionary Principle: New Pillars and Pathways for Environmental, Sociocultural, and Economic Resilience. Sustainability 2019, 11(8), 2357. Povezava: https://www.mdpi.com/2071-1050/11/8/2357/htm
  • Maslanyj M., Lightfoot T., Schüz J., Sienkiewicz Z., McKinlay A.: A precautionary public health protection strategy for the possible risk of childhood leukaemia from exposure to power frequency magnetic fields. BMC Public Health 10, 673 (2010). Povezava: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-10-673

Komuniciranje tveganj

  • Wiedemann P., Boerner FU., Freudenstein F. Effects of communicating uncertainty descriptions in hazard identification, risk characterization, and risk protection. Plos One. 2021.
  • Wiedemann PM., Boerner F., Claus F. How far is how far enough? Safety perception and acceptance of extra-high-voltage power lines in Germany. Journal of Risk Research. 2016.
  • Shahab L., McGowan JA., Waller J., Smith SG. Prevalence of beliefs about actual and mythical causes of cancer and their association with socio-demographic and health-related characteristics: Findings from a cross-sectional survey in England. European Journal of Cancer. 2018.
  • Moyer RM., Song G. Cultural predispositions, specific affective feelings, and benefit–risk perceptions: explicating local policy elites’ perceived utility of high voltage power line installations. Journal of Risk Research. 2017.
  • Karadeniz H., Cetinkaya F. Knowledge levels and attitudes of adult individuals about cancer and its risk factors. 2020.

Izpostavljenost otrok

  • IARC Monographs. IARC working group on the evaluation of carcinogenic risks to humans: non-ionizing radiation, part 1: s static and extremely low-frequency (ELF) electric and magnetic fields. Eval. Carcinog.Risks Hum. 80, 1–395 (2002).
  • Scientific Committee on Emerging and Newly Identified Health Risks. Potential health effects of exposure to electromagnetic fields (EMF). SCENIHR, Brussels. (2015).
  • L. Kheifets et al., «Pooled analysis of recent studies on magnetic fields and childhood leukaemia», Br J Cancer, vol. 103, n. 7, pag. 1128–1135, set. 2010, doi: 10.1038/sj.bjc.6605838.
  • Y. Ren et al., «Prenatal exposure to extremely low frequency magnetic field and its impact on fetal growth», Environ Health, vol. 18, n. 1, pag. 6, dic. 2019, doi: 10.1186/s12940-019-0447-9.
  • I. Eliyahu, R. Hareuveny, M. Riven, S. Kandel, e L. Kheifets, «24-h personal monitoring of exposure to Power Frequency Magnetic Fields in adolescents – Results of a National Survey», Environmental Research, vol. 158, pagg. 295–300, ott. 2017, doi: 10.1016/j.envres.2017.06.027.
  • I. Magne, M. Souques, I. Bureau, A. Duburcq, E. Remy, e J. Lambrozo, «Exposure of children to extremely low frequency magnetic fields in France: Results of the EXPERS study», J Expo Sci Environ Epidemiol, vol. 27, n. 5, pagg. 505–512, set. 2017, doi: 10.1038/jes.2016.59.
  • I. Liorni, M. Parazzini, B. Struchen, S. Fiocchi, M. Röösli, e P. Ravazzani, «Children’s Personal Exposure Measurements to Extremely Low Frequency Magnetic Fields in Italy», IJERPH, vol. 13, n. 6, pag. 549, mag. 2016, doi: 10.3390/ijerph13060549.
  • B. Struchen, I. Liorni, M. Parazzini, S. Gängler, P. Ravazzani, e M. Röösli, «Analysis of personal and bedroom exposure to ELF-MFs in children in Italy and Switzerland», J Expo Sci Environ Epidemiol, vol. 26, n. 6, pagg. 586–596, nov. 2016, doi: 10.1038/jes.2015.80.
  • B. Valič, B. Kos, e P. Gajšek, «Typical exposure of children to EMF: exposimetry and dosimetry», Radiation Protection Dosimetry, vol. 163, n. 1, pagg. 70–80, gen. 2015, doi: 10.1093/rpd/ncu057.
  • J. C. Núñez‐Enríquez et al., «Extremely Low‐Frequency Magnetic Fields and the Risk of Childhood B‐Lineage Acute Lymphoblastic Leukemia in a City With High Incidence of Leukemia and Elevated Exposure to ELF Magnetic Fields», Bioelectromagnetics, vol. 41, n. 8, pagg. 581–597, dic. 2020, doi: 10.1002/bem.22295.
  • J. Park, E. Jeong, e G. Seomun, «Extremely Low-Frequency Magnetic Fields Exposure Measurement during Lessons in Elementary Schools», IJERPH, vol. 17, n. 15, pag. 5284, lug. 2020, doi: 10.3390/ijerph17155284.
  • M. N. Halgamuge e L. McLean, «Measurement and analysis of power-frequency magnetic fields in residences: Results from a pilot study», Measurement, vol. 125, pagg. 415–424, set. 2018, doi: 10.1016/j.measurement.2018.05.007.
  • Y. Kiouvrekis et al., «EXTREMELY LOW FREQUENCY ELECTROMAGNETIC EXPOSURE ASSESSMENT IN SCHOOLS: A STATISTICAL ANALYSIS OF URBAN AND SEMI-URBAN AREAS», Radiation Protection Dosimetry, vol. 194, n. 2–3, pagg. 76–81, lug. 2021, doi: 10.1093/rpd/ncab076.
  • P. Rathebe, C. Weyers, e F. Raphela, «Exposure levels of ELF magnetic fields in the residential areas of Mangaung Metropolitan Municipality», Environ Monit Assess, vol. 190, n. 9, pag. 544, set. 2018, doi: 10.1007/s10661-018-6916-8.
  • M. Gallastegi et al., «Exposure to extremely low and intermediate-frequency magnetic and electric fields among children from the INMA-Gipuzkoa cohort», Environmental Research, vol. 157, pagg. 190–197, ago. 2017, doi: 10.1016/j.envres.2017.05.027.
  • F. Abuasbi, A. Lahham, e I. R. Abdel-Raziq, «RESIDENTIAL EXPOSURE TO EXTREMELY LOW FREQUENCY ELECTRIC AND MAGNETIC FIELDS IN THE CITY OF RAMALLAH-PALESTINE», Radiation Protection Dosimetry, vol. 179, n. 1, pagg. 49–57, apr. 2018, doi: 10.1093/rpd/ncx209.
  • M. A.A. Almekhlafi et al., «Indoor Electromagnetic Radiation Intensity Relationship to Total Energy of Household Appliances», Computers, Materials & Continua, vol. 70, n. 3, pagg. 5421–5435, 2022, doi: 10.32604/cmc.2022.019823.
  • M. Bonato, E. Chiaramello, S. Fiocchi, G. Tognola, P. Ravazzani, e M. Parazzini, «Influence of Low Frequency Near-Field Sources Position on the Assessment of Children Exposure Variability Using Stochastic Dosimetry», IEEE J. Electromagn. RF Microw. Med. Biol., vol. 4, n. 3, pagg. 179–186, set. 2020, doi: 10.1109/JERM.2019.2958549.
  • S. Choi et al., «Characterization of Levels of Extremely Low Frequency Magnetic Fields Emitted From Portable Hand‐Held Fans», Bioelectromagnetics, vol. 40, n. 8, pagg. 569–577, dic. 2019, doi: 10.1002/bem.22210.
  • S. Aerts et al., «Measurements of intermediate-frequency electric and magnetic fields in households», Environmental Research, vol. 154, pagg. 160–170, apr. 2017, doi: 10.1016/j.envres.2017.01.001.
  • E. Chiaramello, L. Le Brusquet, M. Parazzini, S. Fiocchi, M. Bonato, e P. Ravazzani, «3D space‐dependent models for stochastic dosimetry applied to exposure to low frequency magnetic fields», Bioelectromagnetics, vol. 40, n. 3, pagg. 170–179, apr. 2019, doi: 10.1002/bem.22179.
  • S. Fiocchi, E. Chiaramello, M. Parazzini, e P. Ravazzani, «Influence of tissue conductivity on foetal exposure to extremely low frequency magnetic fields at 50 Hz using stochastic dosimetry», PLoS ONE, vol. 13, n. 2, pag. e0192131, feb. 2018, doi: 10.1371/journal.pone.0192131.
  • E. Chiaramello, S. Fiocchi, P. Ravazzani, e M. Parazzini, «Stochastic Dosimetry for the Assessment of Children Exposure to Uniform 50 Hz Magnetic Field with Uncertain Orientation», BioMed Research International, vol. 2017, pagg. 1–14, 2017, doi: 10.1155/2017/4672124.
  • G. Tognola et al., «Cluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of Environmental Variables», IJERPH, vol. 16, n. 22, pag. 4363, nov. 2019, doi: 10.3390/ijerph16224363.
  • G. Tognola et al., «Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children», IJERPH, vol. 16, n. 7, pag. 1230, apr. 2019, doi: 10.3390/ijerph16071230.
  • M. Bonato et al., «Characterization of Children’s Exposure to Extremely Low Frequency Magnetic Fields by Stochastic Modeling», IJERPH, vol. 15, n. 9, pag. 1963, set. 2018, doi: 10.3390/ijerph15091963.